1st Party, 2nd Party and 3rd Party Master Data

Until now, much of the methodology and technology in the Master Data Management (MDM) world has been about how to optimize the use of what can be called first party master data. This is master data already collected within your organization and the approaches to MDM and the MDM solutions offered has revolved around federating internal silos and obtain a single source of truth within the corporate walls.

Besides that third-party data has been around for many years as described in the post Third-Party Data and MDM. Use of third party data in MDM has mainly been about enriching customer and supplier master data from business directories and in some degree utilizing standardized pools of product data in various solutions.

open doorUsing third party data for customer and supplier master data seems to be a very good idea as exemplified in the post Using a Business Entity Identifier from Day One. This is because customer and supplier master looks pretty much the same to every organization. With product master data this is not case and that is why third party sources for product master data may not be fully effective.

Second party data is data you get directly from the external source. With customer and supplier master data we see that approach in self-registration services. My recommendation is to combine self-registration and third party data in customer and supplier on-boarding processes. With product master data I think leaning mostly to second party connections in business ecosystems seems like the best way forward. There is more on that in a discussion on the LinkedIn  MDM – Master Data Management Group.

Bookmark and Share

Tough Questions About MDM

This week I had the pleasure of speaking in Copenhagen at an event about The Evolution of MDM. The best speaking experiences is when there are questions and responses from the attendees. At this event, such lovely interuptions took us around some of the tough questions about Master Data Management (MDM), like

  • Is the single source of truth really achievable?
  • Does MDM belong within IT in the organization?
  • Is blockchain technology useful within MDM?

Single source of truth

Many seasoned MDM practitioners has experienced attempts to implement a single source of truth for a given MDM domain within a given organization and seen the attempt failed miserably. The obstacles are plentiful including business units with different goals and IT landscapes with heterogenic capabilities.

MDM Stage 3
Single place of trust

I think there is a common sentiment in the data management realm about to lower that bar a bit. Perhaps a single place of trust is a more realistic goal as examined in the post Three Stages of MDM Maturity.

MDM in IT

We all know that MDM should belong to the business part of the organization and anchoring MDM (and BI and CRM and so many other disciplines) in the IT part of the organization is a misunderstanding. However, we often see that MDM is placed in the IT department because IT already spans the needs of marketing, sales, logistics, finance and so on.

My take is that the actual vision, goals and holistic business involvement trumps the formal organizational anchoring. Currently I work with two MDM programmes, one anchored in IT and one in finance. As an MDM practitioner, you have to deal with business and IT anyway.

Blockchain

Blockchain is a new technology disrupting business these days. Recently Andrew White of Gartner blogged about how blockchain thinking could go where traditional single view of master data approaches haven’t been able to go. The blog post is called Why not Blockchain Data Synchronization? As Andrew states: “The next year could be very interesting, and very disrupted.”

PS: My slides from the event are available here: MDM before, now and in the future.

MDM 3.0 Musings

The term Data Quality 3.0 has been around on this blog for nearly 5 years and was recently aired again in the post Data Quality 3.0 Revisited.

A natural consequence of the concept of Data Quality 3.0 is something we may call Master Data Management (MDM) 3.0.

Master Data Management has in a large degree until now been about how to manage master data internally within organizations. The goal has often been to merge different data silos within the organization into one trusted source of master data. But any organization in itself manages a master data silo too. The master data kept by any organization is in a large degree a description of real world entities that also is digitalized by business partners and other third party entities.

The possibility of sharing customer, or rather party, master data as well as product and location master data was examined in the post Third Party Data and MDM.

open-doorBut how do popular MDM solutions facilitate the enormous potential of looking outside the implementing organization when it comes to achieving high value master data? Very poor, in general, I’m afraid. From my experience MDM vendors stops at the point of creating more or less readymade interfaces to popular data pools and for product data some kind of supplier portals. While the professional MDM vendor have viable methodologies for internal MDM processes there is an open door to the blue sky when it comes to external collaboration.

Bookmark and Share

The Place for Data Matching in and around MDM

Data matching has increasingly become a component of Master Data Management (MDM) solutions. This has mostly been the case for MDM of customer data solutions, but it is also a component of MDM of product data solutions not at least when these solutions are emerging into the multi-domain MDM space.

The deployment of data matching was discussed nearly 5 years ago in the post Deploying Data Matching.

Neural NetworkWhile MDM solutions since then have been picking up on the share of the data matching being done around it is still a fairly small proportion of data matching that is performed within MDM solutions. Even if you have a MDM solution with data matching capabilities, you might still consider where data matching should be done. Some considerations I have come across are:

Acquisition and silo consolidation circumstances

A common use case for data matching is as part of an acquisition or internal consolidation of data silos where two or more populations of party master data, product master data and other important entities are to be merged into a single version of truth (or trust) in terms of uniqueness, consistency and other data quality dimensions.

While the MDM hub must be the end goal for storing that truth (or trust) there may be good reasons for doing the data matching before the actual on-boarding of the master data.

These considerations includes

The point of entry

The MDM solution isn’t for many good reasons not always the system of entry. To do the data matching at the stage of data being put into the MDM hub may be too late. Expanding the data matching capabilities as Service Oriented Architecture component may be a better way as pondered in the post Service Oriented Data Quality.

Avoiding data matching

Even being a long time data matching practitioner I’m afraid I have to bring up the subject of avoiding data matching as further explained in the post The Good, The Better and The Best Way of Avoiding Duplicates.

Bookmark and Share

Bringing the Location to Multi-Domain MDM

When we talk about multi-domain Master Data Management (MDM) we often focus on the two dominant MDM domains being customer (or rather party) MDM and product (or maybe things) MDM.

The location domain is the third bigger domain within MDM. Location management can be more or less complex depending on the industry vertical we are looking at. In the utility and telco sectors location management is a big thing. Handling installations, assets and networks is typically supported by a Geographical Information System (GIS).

Master Data Management is much about supporting that different applications can have a unified view of the same core business entities. Therefore, in the utility and telco sectors a challenge is to bring the GIS application portfolio into the beat with other applications that also uses locations as explained in the post Sharing Big Location Reference Data.

Location2

The last couple of days I enjoyed taking part in the Nordic user conference for a leading GIS solution in the utility and telco sector. This solution is called Smallword.

It is good to see that at least one forward looking organization in the utility and telco sector is working with how location master data management can be shared between business functions and applications and aligned with party master data management and product master data management.

Bookmark and Share

Leads, Accounts, Contacts and Data Quality

business partnersMany CRM applications have the concepts of leads, accounts and contacts for registering customers or other parties with roles in sales and customer service.

Most CRM systems have a data model suited for business-to-business (B2B) operations. In a B2B environment:

  • A lead is someone who might become your customer some day
  • An account is a legal entity who has or seems to become your customer
  • A contact is a person that works at or in other ways represent an account

In business-to-consumer (B2C) environments there are different ways of making that model work.

The general perception is that data about a lead can be so and so while it of course is important to have optimal data quality for accounts and contacts.

However, this approach works against the essential data quality rule of getting things right the first time.

Converting a lead into an account and/or a contact is a basic CRM process and the data quality pitfalls in that process are many. To name a few:

  • Is the lead a new account or did we already have that account in the database?
  • Is the contact new or did we know that person maybe at another account?
  • How do we align the known data about the lead with external reference data during the conversion process?

In other words, the promise of having a 360-degree customer view is jeopardized by the concept of most CRM systems.

Bookmark and Share

Sharing Big Location Reference Data

In the post Location Data Quality for MDM the different ways of handling location master data within many companies was examined.

A typical “as is” picture could be this:

Location1

Location data are handled for different purposes using different kinds of systems. Customer data may be data quality checked by using address validation tools and services, which also serves as prerequisite for better utilization of these data in a Geographical Information System (GIS) and in using internal customer master data in marketing research for example by utilizing demographic classifications for current and prospective customers.

Often additional external location data are used for enrichment and for supplementing internal master data downstream in these specialized systems. It may very well be that the external location reference data used at different points does not agree in terms of precision, timeliness, conformity and other data quality dimensions.

A desired “to be” picture could be this:

Location2

In this set-up everything that can be shared across different purposes are kept as common (big) reference data and/or are accessible within a data-as-a-service environment maintained by third party data providers.

Bookmark and Share

A Little Bit of Truth vs A Big Load of Trust

The soul of Master Data Management (MDM) is often explained as the search for a single version of the truth. It has always puzzled me that that search in many cases has been about finding the truth as the best data within different data silos inside a given organization.

business partnersBig data, including how MDM and big data can be a good match, has been a well covered subject lately. As discussed in the post Adding 180 Degrees to MDM this has shed the light on how external data may help having better master data by looking at data from outside in.

At Gartner, the analyst firm, they have phrased that movement as a shift from truth to trust for example as told in the post by Andrew White called From MDM to Big Data – From truth to trust.

Don’t get me (and master data) wrong. The truth isn’t out there in a single silver bullet shot. You have to mash up your internal master data with some of the most trustworthy external big reference data. This include commercial directory offerings, open data possibilities, public sector data (made available for private entities) and social networks.

Indeed there are potholes in that path.  Timeliness of directories, completeness of open data, consistency and availability and price tags on public sector data and validity of social network data are common challenges.

Bookmark and Share

Building an instant Data Quality Service for Quotes

In yesterday’s post called Introducing the Famous Person Quote Checker the issue with all the quotes floating around in social media about things apparently said by famous persons was touched.

The bumblebee can’t fly faster than the speed of light – Albert Einstein
The bumblebee can’t fly faster than the speed of light – Albert Einstein

If you were to build a service that could avoid postings with disputable quotes, what considerations would you have then? Well, I guess pretty much the same considerations as with any other data quality prevention service.

Here are three things to consider:

Getting the reference data right

Finding the right sources for say reference data for world-wide postal addresses was discussed in the post A Universal Challenge.

The same way, so to speak, it will be hard to find a single source of truth about what famous persons actually said. It will be a daunting task to make a registry of confirmed quotes.

Embracing diversity

Staying with postal addresses this blog has a post called Where the Streets have one Name but Two Spellings.

The same way, so to speak again, quotes are translated, transliterated and has gone through transcription from the original language and writing system. So every quote may have many true versions.

Where to put the check?

As examined in the post The Good, Better and Best Way of Avoiding Duplicates there are three options:

1)      A good and simple option could be to periodically scan through postings in social media and when a disputable quote is found sending an eMail to the culprit who did the posting. However, it’s probably too late, as even if you for example delete your tweet, the 250 retweets will still be out there. But it’s a reasonable way of starting marking up all the disputable quotes out there.

2)      A better option could be a real-time check. You type in a quote on a social media site and the service prompts you: “Hey Dude, that person didn’t say that”. The weak point is that you already did all the typing, and now you have to find a new quote. But it will work when people try to share disputable quotes.

3)    The best option would be that you start typing “If you can’t explain it simply… “ and the service prompts a likely quote as: “Everything should be as simple as it can be, but not simpler – Albert Einstein”.

Bookmark and Share

On Maps, Data Quality and MDM

Maps are great but sometimes you’ll have some trouble with data quality issues on maps as told in the post Troubled Bridge over Water.

When it comes to political borders on maps things may get really nasty as it happened lately for Huawei with a congratulation to Pakistan on the independence day showing a map with borders not in line with the Pakistani version of the truth. The story is told here.

Google EarthThere are plenty of disputes about borders in the world stretching from the serious situations in the Himalaya region to for example the close to comical case between Canada and Denmark/Greenland over Hans Island.

In these situations you can’t settle on a single version of the truth.

However, even if we don’t have disputes on what is right or wrong we may have very different views on how to look at various entities as examined in the post The Greenland Problem in MDM.

Bookmark and Share