Sell more. Reduce costs.

Business outcome is the end goal of any data management activity may that be data governance, data quality management, Master Data Management (MDM) and Product Information Management (PIM).

Business outcome comes from selling more and reducing costs.

At Product Data Lake we have a simple scheme for achieving business outcome through selling more goods and reducing costs of sharing product information between trading partners in business ecosystems:

Sell more Reduce costs

Using Pull or Push to Get to the Next Level in Product Information Management

The importance of having a viable Product Information Management (PIM) solution has become well understood for companies who participates in supply chains.

The next step towards excellence in PIM is to handle product information in close collaboration with your trading partners. Product Data Lake is the solution for that. Here upstream providers of product information (manufacturers and upstream distributors) and downstream receivers of product information (downstream distributors and retailers) connect their choice of in-house PIM solution or other product master data solution as PLM (Product Lifecycle Management) or ERP.

Read more about that in the post What a PIM-2-PIM Solution Looks Like.

The principle behind Product Data Lake is inspired by how a data lake differs from a traditional data warehouse. In a data lake the linking and transformation takes place late, when the data is consumed by the receiver.

pdl-diagram-new

Product Data Lake resembles a social network as you connect with your trading partners from the real world in order to collaborate on getting complete and accurate product data from the manufacturer to the point-of-sales:

  • Pull-PushAs a downstream receiver, you can be on the winning side by utilizing our Product Data Pull service
  • As an upstream provider, you can be on the winning side by utilizing our Product Data Push service

Data Born Companies and the Rest of Us

harriThis post is a new feature here on this blog, being guest blogging by data management professionals from all over the world. First up is Harri Juntunen, Partner at Twinspark Consulting in Finland:

Data and clever use of data in business has had and will have significant impact on value creation in the next decade. That is beyond reasonable doubt. What is less clear is, how this is going to happen? Before we answer the question, I think it is meaningful to make a conceptual distinction between data born companies and the rest of us.

Data born born companies are companies that were conceived from data. Their business models are based  on monetising clever use of data. They have organised everything from their customer service to operations to be capable of maximally harness data. Data and capabilities to use data to create value is their core competency. These companies are the giants of data business: Google, Facebook, Amazon, Über, AirBnB. The standard small talk topics in data professionals’ discussions.

However, most of the companies are not data born. Most of the companies were originally established to serve a different purpose. They were founded to serve some physical needs and actually maintaining them physically, be it food, spare parts or factories. Obviously, all of these companies in  e.g. manufacturing and maintenance of physical things need data to operate. Yet, these companies are not organised around the principles of data born companies and capabilities to harness data as the driving force of their businesses.

We hear a lot of stories and successful examples about how data born companies apply augmented intelligence and other latest technology achievements. Surely, technologies build around of data are important. The key question to me is: what, in practice, is our capability to harness all of these opportunities in companies that are not data born?

In my daily practice I see excels floating around and between companies. A lot of manual work caused by unstandardised data, poor governance and bad data quality. Manual data work simply prevents companies to harness the capabilities created by data born companies. Yet, most of the companies follow the data born track without sufficient reflection. They adopt the latest technologies used by the data born companies. They rephrase same slogans: automation, advanced analytics, cognitive computing etc. And yet, they are not addressing the fundamental and mundane issues in their own capabilities to be able to make business and create value with data. Humans are doing machine’s job.

Why? Many things relate to this, but data quality and standardization are still pressing problems in every day practice in many companies. Let alone between companies. We can change this. The rest of us can reborn from data just by taking a good look of our mundane data practices instead of aspiring to go for the next big thing.

P.S. The Google Brain team had reddit a while ago and they were asked “what do you think is underrated?

The answer:

“Focus on getting high-quality data. “Quality” can translate to many things, e.g. thoughtfully chosen variables or reducing noise in measurements. Simple algorithms using higher-quality data will generally outperform the latest and greatest algorithms using lower-quality data.”

https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_brain_team_wed_love_to/

About Harri Juntunen:

Harri is seasoned data provocateur and ardent advocate of getting the basics right. Harri says: People and data first, technology will follow.

You can contact Harri here:

+358 50 306 9296

harri.juntunen@twinspark.fi

www.twinspark.fi

 

Everyday Digital Transformation

Ben Rund of Informatica has a Youtube video running these days with the title/question: Enough Heard on Digital Transformation by Uber & AirBnB?

I share this sentiment with Ben. You don’t have to disrupt the whole world to take part in digital transformation and you don’t have to start something completely new. As an established enterprise you can transform your current business and combine the good things from the past with the new opportunities aroused from the digital evolution.

Forrester, the other analyst firm, some years ago devided digital transformation into a loop of:

  • Digital Customer Experience
  • Digital Operational Excellence

The below figure visualizes this landscape:

digital

What I would like to elaborate on related to this picture is the business ecosystem of your enterprise, which must be included in the everyday digital transformation.

Let’s take the example of product information management:

However, connect is better than collect. If you are dependent on receiving spreadsheets with product information from your trading partners or you let them put their spreadsheets into your supplier product data portal, you have an everyday digital transformation in front of you.

The solution for that is Product Data Lake.

digital2

Shipping Product Information

When looking out of the windows from Product maersk-seen-from-pdl-in-sunshineData Lake global headquarters (well, that is also our home office) we see our neighbour, which is the global headquarters of Maersk, a major worldwide operating shipping company.

In all humbleness we do very parallel business. Maersk is good at moving goods. We are going to move data about the goods. Product data or product information if you like.

The reason of being for a shipping company is that it would be very ineffective for each manufacturer of goods, if they should arrange and carry out the transportation of their manufactured goods to each distributor around the world. Furthermore, it would be equally ineffective, if each distributor should arrange and carry out the transportation of their range of goods to each reseller or large end buyer.

Until now, this ineffectiveness has unfortunately been the case when it comes to exchanging data about the goods. Manufacturers are asked by their distributors to provide product information in a different way for each – most often meaning in a different spreadsheet. And the same craziness repeats itself when it comes to exchanging data between distributors, resellers and large end users of product information.

At Product Data Lake we have set sail to end this insanity and bring digitalization to shipping of product information. Learn more about how exactly we will arrange that journey on Product Data Lake Documentation and Data Governance.

Bookmark and Share

Ways of Sharing Product Data in Business Ecosystems

Sharing product data within business ecosystems of manufacturers, distributors, retailers and end users has grown dramatically during the last years driven by the increased use of e-commerce and other customer self-service sales approaches.

At Product Data Lake we recently had a survey about how companies shares product data today. The figures were as seen below:

our survey

The result shows that there are different approaches out there. Spreadsheets still rules the world though closely, in this survey, followed by external data portals. Direct system to system approaches are also present while supplier portals seems to be not that common.

At the Product Data Lake we aim to embrace those different approaches. Well, regarding use of spreadsheets and digital asset files via eMail our embracement is meant to be that of a constrictor snake. The Product Data Lake is the solution to end the hailstorms of spreadsheets with product data within cross company supply chains.

For external data portals, the Product Data Lake offers the concept of a data reservoir. A data reservoir in the Product Data Lake can be with an industry focus or with a special focus on certain data elements as for example sustainability data as described in the post Sustainability Data in PIM.

Direct systems to system exchange can be orchestrated through the Product Data Lake and supplier portals can served by the Product Data Lake. In that way existing investments in those approaches, that typically are implemented to serve basic data elements shared with your top trading partners, can be supplemented by a method that caters for exchange with all your trading partners and covering all data elements and digital assets.

Bookmark and Share

Take an Ultra Short Survey on Product Data Exchange

How do you exchange product data with your trading partners today? At the Product Data Lake we would like to know some more about that. We do expect that many still send eMails with spreadsheets and digital assets. But please tell us how it is with you. Take the survey by clicking here.

Survey

Also please comment on this blog post on your plans or if you work with Product Information Management (PIM) as a service provider and have experiences to share.

Bookmark and Share