Data Born Companies and the Rest of Us

harriThis post is a new feature here on this blog, being guest blogging by data management professionals from all over the world. First up is Harri Juntunen, Partner at Twinspark Consulting in Finland:

Data and clever use of data in business has had and will have significant impact on value creation in the next decade. That is beyond reasonable doubt. What is less clear is, how this is going to happen? Before we answer the question, I think it is meaningful to make a conceptual distinction between data born companies and the rest of us.

Data born born companies are companies that were conceived from data. Their business models are based  on monetising clever use of data. They have organised everything from their customer service to operations to be capable of maximally harness data. Data and capabilities to use data to create value is their core competency. These companies are the giants of data business: Google, Facebook, Amazon, Über, AirBnB. The standard small talk topics in data professionals’ discussions.

However, most of the companies are not data born. Most of the companies were originally established to serve a different purpose. They were founded to serve some physical needs and actually maintaining them physically, be it food, spare parts or factories. Obviously, all of these companies in  e.g. manufacturing and maintenance of physical things need data to operate. Yet, these companies are not organised around the principles of data born companies and capabilities to harness data as the driving force of their businesses.

We hear a lot of stories and successful examples about how data born companies apply augmented intelligence and other latest technology achievements. Surely, technologies build around of data are important. The key question to me is: what, in practice, is our capability to harness all of these opportunities in companies that are not data born?

In my daily practice I see excels floating around and between companies. A lot of manual work caused by unstandardised data, poor governance and bad data quality. Manual data work simply prevents companies to harness the capabilities created by data born companies. Yet, most of the companies follow the data born track without sufficient reflection. They adopt the latest technologies used by the data born companies. They rephrase same slogans: automation, advanced analytics, cognitive computing etc. And yet, they are not addressing the fundamental and mundane issues in their own capabilities to be able to make business and create value with data. Humans are doing machine’s job.

Why? Many things relate to this, but data quality and standardization are still pressing problems in every day practice in many companies. Let alone between companies. We can change this. The rest of us can reborn from data just by taking a good look of our mundane data practices instead of aspiring to go for the next big thing.

P.S. The Google Brain team had reddit a while ago and they were asked “what do you think is underrated?

The answer:

“Focus on getting high-quality data. “Quality” can translate to many things, e.g. thoughtfully chosen variables or reducing noise in measurements. Simple algorithms using higher-quality data will generally outperform the latest and greatest algorithms using lower-quality data.”

https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_brain_team_wed_love_to/

About Harri Juntunen:

Harri is seasoned data provocateur and ardent advocate of getting the basics right. Harri says: People and data first, technology will follow.

You can contact Harri here:

+358 50 306 9296

harri.juntunen@twinspark.fi

www.twinspark.fi

 

Everyday Digital Transformation

Ben Rund of Informatica has a Youtube video running these days with the title/question: Enough Heard on Digital Transformation by Uber & AirBnB?

I share this sentiment with Ben. You don’t have to disrupt the whole world to take part in digital transformation and you don’t have to start something completely new. As an established enterprise you can transform your current business and combine the good things from the past with the new opportunities aroused from the digital evolution.

Forrester, the other analyst firm, some years ago devided digital transformation into a loop of:

  • Digital Customer Experience
  • Digital Operational Excellence

The below figure visualizes this landscape:

digital

What I would like to elaborate on related to this picture is the business ecosystem of your enterprise, which must be included in the everyday digital transformation.

Let’s take the example of product information management:

However, connect is better than collect. If you are dependent on receiving spreadsheets with product information from your trading partners or you let them put their spreadsheets into your supplier product data portal, you have an everyday digital transformation in front of you.

The solution for that is Product Data Lake.

digital2

Shipping Product Information

When looking out of the windows from Product maersk-seen-from-pdl-in-sunshineData Lake global headquarters (well, that is also our home office) we see our neighbour, which is the global headquarters of Maersk, a major worldwide operating shipping company.

In all humbleness we do very parallel business. Maersk is good at moving goods. We are going to move data about the goods. Product data or product information if you like.

The reason of being for a shipping company is that it would be very ineffective for each manufacturer of goods, if they should arrange and carry out the transportation of their manufactured goods to each distributor around the world. Furthermore, it would be equally ineffective, if each distributor should arrange and carry out the transportation of their range of goods to each reseller or large end buyer.

Until now, this ineffectiveness has unfortunately been the case when it comes to exchanging data about the goods. Manufacturers are asked by their distributors to provide product information in a different way for each – most often meaning in a different spreadsheet. And the same craziness repeats itself when it comes to exchanging data between distributors, resellers and large end users of product information.

At Product Data Lake we have set sail to end this insanity and bring digitalization to shipping of product information. Learn more about how exactly we will arrange that journey on Product Data Lake Documentation and Data Governance.

Bookmark and Share

Ways of Sharing Product Data in Business Ecosystems

Sharing product data within business ecosystems of manufacturers, distributors, retailers and end users has grown dramatically during the last years driven by the increased use of e-commerce and other customer self-service sales approaches.

At Product Data Lake we recently had a survey about how companies shares product data today. The figures were as seen below:

our survey

The result shows that there are different approaches out there. Spreadsheets still rules the world though closely, in this survey, followed by external data portals. Direct system to system approaches are also present while supplier portals seems to be not that common.

At the Product Data Lake we aim to embrace those different approaches. Well, regarding use of spreadsheets and digital asset files via eMail our embracement is meant to be that of a constrictor snake. The Product Data Lake is the solution to end the hailstorms of spreadsheets with product data within cross company supply chains.

For external data portals, the Product Data Lake offers the concept of a data reservoir. A data reservoir in the Product Data Lake can be with an industry focus or with a special focus on certain data elements as for example sustainability data as described in the post Sustainability Data in PIM.

Direct systems to system exchange can be orchestrated through the Product Data Lake and supplier portals can served by the Product Data Lake. In that way existing investments in those approaches, that typically are implemented to serve basic data elements shared with your top trading partners, can be supplemented by a method that caters for exchange with all your trading partners and covering all data elements and digital assets.

The launch of the Product Data Lake is 24 days away. Hope to see you either in London Olympia or on the internet then.

Bookmark and Share

Take an Ultra Short Survey on Product Data Exchange

How do you exchange product data with your trading partners today? At the Product Data Lake we would like to know some more about that. We do expect that many still send eMails with spreadsheets and digital assets. But please tell us how it is with you. Take the survey by clicking here.

Survey

Also please comment on this blog post on your plans or if you work with Product Information Management (PIM) as a service provider and have experiences to share.

Bookmark and Share

Data Management for Business Ecosystems

Business ecosystems is an important concept of the digital age. The father of business ecosystems, James F. Moore, defined business ecosystems as:

“An economic community supported by a foundation of interacting organizations and individuals—the organisms of the business world. The economic community produces goods and services of value to customers, who are themselves members of the ecosystem. The member organisms also include suppliers, lead producers, competitors, and other stakeholders”.

The problem with data management methodologies and tools today, as I see it, is that they emphasizes on the needs inside the corporate walls of a single company without much attention to, that every single company is a member of one or several business ecosystems as examined in the post called MDM and SCM: Inside and outside the corporate walls.

Opening your data management, including your Master Data Management (MDM), up to the outside is scary business, as the ecosystems often will include your competitors as well as mentioned in the post Toilet Seats and Data Quality.

Nevertheless, if you want your company to survive in the digital age by building up your company’s digitilazation effort you have to extend your data management strategy to encompass the business ecosystems where you are a member.

And now some promotion:

Helene light 03
The Product Data Lake: A tool for business ecosystems

Take A Quick Tour around the Product Data Lake

Bookmark and Share

A Quick Tour around the Product Data Lake

The Product Data Lake is a cloud service for sharing product data in the eco-systems of manufacturers, distributors, retailers and end users of product information.

PDL tour 01As an upstream provider of products data, being a manufacturer or upstream distributor, you have these requirements:

  • When you introduces new products to the market, you want to make the related product data and digital assets available to  your downstream partners in a uniform way
  • When you win a new downstream partner you want the means to immediately and professionally provide product data and digital assets for the agreed range
  • When you add new products to an existing agreement with a downstream partner, you want to be able to provide product data and digital assets instantly and effortless
  • When you update your product data and related digital assets, you want a fast and seamless way of pushing it to your downstream partners
  • When you introduce a new product data attribute or digital asset type, you want a fast and seamless way of pushing it to your downstream partners.

The Product Data Lake facilitates these requirements by letting you push your product data into the lake in your in-house structure that may or may not be fully or partly compliant to an international standard.

PDL tour 02

As an upstream provider, you may want to push product data and digital assets from several different internal sources.

The product data lake tackles this requirement by letting you operate several upload profiles.

PDL tour 03

As a downstream receiver of product data, being a downstream distributor, retailer or end user, you have these requirements:

  • When you engage with a new upstream partner you want the means to fast and seamless link and transform product data and digital assets for the agreed range from the upstream partner
  • When you add new products to an existing agreement with an upstream partner, you want to be able to link and transform product data and digital assets in a fast and seamless way
  • When your upstream partners updates their product data and related digital assets, you want to be able to receive the updated product data and digital assets instantly and effortless
  • When you introduce a new product data attribute or digital asset type, you want a fast and seamless way of pulling it from your upstream partners
  • If you have a backlog of product data and digital asset collection with your upstream partners, you want a fast and cost effective approach to backfill the gap.

The Product Data Lake facilitates these requirements by letting you pull your product data from the lake in your in-house structure that may or may not be fully or partly compliant to an international standard.

PDL tour 04

In the Product Data Lake, you can take the role of being an upstream provider and a downstream receiver at the same time by being a midstream subscriber to the Product Data Lake. Thus, Product Data Lake covers the whole supply chain from manufacturing to retail and even the requirements of B2B (Business-to-Business) end users.

PDL tour 05

The Product Data Lake uses the data lake concept for big data by letting the transformation and linking of data between many structures be done when data are to be consumed for the first time. The goal is that the workload in this system has the resemblance of an iceberg where 10% of the ice is over water and 90 % is under water. In the Product Data Lake manually setting up the links and transformation rules should be 10 % of the duty and the rest being 90 % of the duty will be automated in the exchange zones between trading partners.

PDL tour 06

TwoLine Blue

Bookmark and Share