Data Born Companies and the Rest of Us

harriThis post is a new feature here on this blog, being guest blogging by data management professionals from all over the world. First up is Harri Juntunen, Partner at Twinspark Consulting in Finland:

Data and clever use of data in business has had and will have significant impact on value creation in the next decade. That is beyond reasonable doubt. What is less clear is, how this is going to happen? Before we answer the question, I think it is meaningful to make a conceptual distinction between data born companies and the rest of us.

Data born born companies are companies that were conceived from data. Their business models are based  on monetising clever use of data. They have organised everything from their customer service to operations to be capable of maximally harness data. Data and capabilities to use data to create value is their core competency. These companies are the giants of data business: Google, Facebook, Amazon, Über, AirBnB. The standard small talk topics in data professionals’ discussions.

However, most of the companies are not data born. Most of the companies were originally established to serve a different purpose. They were founded to serve some physical needs and actually maintaining them physically, be it food, spare parts or factories. Obviously, all of these companies in  e.g. manufacturing and maintenance of physical things need data to operate. Yet, these companies are not organised around the principles of data born companies and capabilities to harness data as the driving force of their businesses.

We hear a lot of stories and successful examples about how data born companies apply augmented intelligence and other latest technology achievements. Surely, technologies build around of data are important. The key question to me is: what, in practice, is our capability to harness all of these opportunities in companies that are not data born?

In my daily practice I see excels floating around and between companies. A lot of manual work caused by unstandardised data, poor governance and bad data quality. Manual data work simply prevents companies to harness the capabilities created by data born companies. Yet, most of the companies follow the data born track without sufficient reflection. They adopt the latest technologies used by the data born companies. They rephrase same slogans: automation, advanced analytics, cognitive computing etc. And yet, they are not addressing the fundamental and mundane issues in their own capabilities to be able to make business and create value with data. Humans are doing machine’s job.

Why? Many things relate to this, but data quality and standardization are still pressing problems in every day practice in many companies. Let alone between companies. We can change this. The rest of us can reborn from data just by taking a good look of our mundane data practices instead of aspiring to go for the next big thing.

P.S. The Google Brain team had reddit a while ago and they were asked “what do you think is underrated?

The answer:

“Focus on getting high-quality data. “Quality” can translate to many things, e.g. thoughtfully chosen variables or reducing noise in measurements. Simple algorithms using higher-quality data will generally outperform the latest and greatest algorithms using lower-quality data.”

https://www.reddit.com/r/MachineLearning/comments/4w6tsv/ama_we_are_the_google_brain_team_wed_love_to/

About Harri Juntunen:

Harri is seasoned data provocateur and ardent advocate of getting the basics right. Harri says: People and data first, technology will follow.

You can contact Harri here:

+358 50 306 9296

harri.juntunen@twinspark.fi

www.twinspark.fi

 

Approaches to Sharing Product Information in Business Ecosystems

One of the most promising aspects of digitalization is sharing information in business ecosystems. In the Master Data Management (MDM) realm, we will in my eyes see a dramatic increase in sharing product information between trading partners as touched in the post Data Quality 3.0 as a stepping-stone on the path to Industry 4.0.

Standardization (or standardisation)

A challenge in doing that is how we link the different ways of handling product information within each organization in business ecosystems. While everyone agrees that a common standard is the best answer we must on the other hand accept, that using a common standard for every kind of product and every piece of information needed is quite utopic. We haven’t even a common uniquely spelled term in English.

Also, we must foresee that one organization will mature in a different pace than another organisation in the same business ecosystem.

Product Data Lake

These observations are the reasons behind the launch of Product Data Lake. In Product Data Lake we encompass the use of (in prioritized order):

  • The same standard in the same version
  • The same standard in different versions
  • Different standards
  • No standards

In order to link the product information and the formats and structures at two trading partners, we support the following approaches:

  • Automation based on product information tagged with a standard as explained in the post Connecting Product Information.
  • Ambassadorship, which is a role taken by a product information professional, who collaborates with the upstream and downstream trading partner in linking the product information. Read more about becoming a Product Data Lake ambassador here.
  • Upstream responsibility. Here the upstream trading partner makes the linking in Product Data Lake.
  • Downstream responsibility. Here the downstream trading partner makes the linking in Product Data Lake.

cross-company-data-governanceData Governance

Regardless of the mix of the above approaches, you will need a cross company data governance framework to control the standards used and the rules that applies to the exchange of product information with your trading partners. Product Data Lake have established a partnership with one of the most recommended authorities in data governance: Nicola Askham – the Data Governance Coach.

For a quick overview please have a look at the Cross Company Data Governance Framework.

Please request more information here.

Bookmark and Share

The World of Reference Data

Google EarthReference Data Management (RDM) is an evolving discipline within data management. When organizations mature in the reference data management realm we often see a shift from relying on internally defined reference data to relying on externally defined reference data. This is based on the good old saying of not to reinvent the wheel and also that externally defined reference data usually are better in fulfilling multiple purposes of use, where internally defined reference data tend to only cater for the most important purpose of use within your organization.

Then, what standard to use tend to be a matter of where in the world you are. Let’s look at three examples from the location domain, the party domain and the product domain.

Location reference data

If you read articles in English about reference data and ensuring accuracy and other data quality dimensions for location data you often meet remarks as “be sure to check validity against US Postal Services” or “make sure to check against the Royal Mail PAF File”. This is all great if all your addresses are in the United States or the United Kingdom. If all your addresses are in another country, there will in many cases be similar services for the given country. If your address are spread around the world, you have to look further.

There are some Data-as-a-Service offerings for international addresses out there. When it comes to have your own copy of location reference data the Universal Postal Union has an offering called the Universal POST*CODE® DataBase. You may also look into open data solutions as GeoNames.

Party reference data

Within party master data management for Business-to-Business (B2B) activities you want to classify your customers, prospects, suppliers and other business partners according to what they do, For that there are some frequently used coding systems in areas where I have been:

  • Standard Industrial Classification (SIC) codes, the four-digit numerical codes assigned by the U.S. government to business establishments.
  • The North American Industry Classification System (NAICS).
  • NACE (Nomenclature of Economic Activities), the European statistical classification of economic activities.

As important economic activities change over time, these systems change to reflect the real world. As an example, my Danish company registration has changed NACE code three times since 1998 while I have been doing the same thing.

This doesn’t make conversion services between these systems more easy.

Product reference data

There are also a good choice of standardized and standardised classification systems for product data out there. To name a few:

  • TheUnited Nations Standard Products and Services Code® (UNSPSC®), managed by GS1 US™ for the UN Development Programme (UNDP).
  • eCl@ss, who presents themselves as: “THE cross-industry product data standard for classification and clear description of products and services that has established itself as the only ISO/IEC compliant industry standard nationally and internationally”. eCl@ss has its main support in Germany (the home of the Mercedes E-Class).

In addition to cross-industry standards there are heaps of industry specific international, regional and national standards for product classification.

Bookmark and Share

New Standards

This morning people in the United States will not wake up to the date being 04/01/2013. Instead the date will be 01/04/2013 as it is in the rest of the world. The days of the mm/dd/yyyy date format are counted.

In a related statement a US government representative writes: What can be standardized must be standardised.

celcius fahrenheitThis is only the first step in a plan for the US to adapt to other more commonly used standards world-wide. The Fahrenheit temperature scale will be changed to Celsius by the 04/01/2014 for degrees below 0 Celsius (formerly 01/04/2014 and 32 degrees Fahrenheit).  When spring comes along at the 01/04/2014 (formerly 04/01/2014) the change will be due also for all warm degrees.

In another move the United Kingdom has released plans for changing from driving in the wrong side of the road to driving in the right side of the road. There will be a phased implementation starting with lorries, then black London Taxis and red double-decker busses and finally all other vehicles.

The phased implementation is explained by a UK government spokesman by saying: We don’t believe in a big bang implementation.

Bookmark and Share