What MDMographic Stereotype is Your Organization?

In marketing we use the term demographic stereotype for segmenting individual persons according to known data elements as age and where we live. There is also a lesser used term called firmographic stereotypes, where companies are segmented according to industry sector, size and other data elements.

Solutions for Master Data Management (MDM) and related disciplines are often presented by industry sector. In my work with tool selection – either as a thorough engagement or a quick select your solution report – I have identified some MDMographic stereotypes, where we have the same requirements based on the distribution of party (customer and supplier/vendor) entities and product entities:

MDMographic Stereotypes and Venn

These stereotypes are further explained in the post Six MDMographic Stereotypes.

10 Data Management TLAs You Should Know

TLA stands for Three Letter Acronym. The world is full of TLAs. The IT world is full of TLAs. The Data Management world is full of TLAs. Here are 10 TLAs from the data management world that have been mentioned a lot of times on this blog and the sister blog over at The Disruptive MDM / PIM / DQM List:

MDM = Master Data Management can be defined as a comprehensive method of enabling an enterprise to link all of its critical data to a common point of reference. When properly done, MDM improves data quality, while streamlining data sharing across personnel and departments. In addition, MDM can facilitate computing in multiple system architectures, platforms and applications. You can find the source of this definition and 3 other – somewhat similar – definitions in the post 4 MDM Definitions: Which One is the Best?

PIM = Product Information Management is a discipline that overlaps MDM. In PIM you focus on product master data and a long tail of specific product information related to each given classification of products. This data is used in omni-channel scenarios to ensure that the products you sell are presented with consistent, complete and accurate data.

DAM = Digital Asset Management is about handling rich media files often related to master data and especially product information. The digital assets can be photos of people and places, product images, line drawings, brochures, videos and much more. You can learn more about how these first 3 mentioned TLAs are connected in the post How MDM, PIM and DAM Stick Together.

DQM = Data Quality Management is dealing with assessing and improving the quality of data in order to make your business more competitive. It is about making data fit for the intended (multiple) purpose(s) of use which most often is best to achieved by real-world alignment. It is about people, processes and technology. When it comes to technology there are different implementations as told in the post DQM Tools In and Around MDM Tools.

RDM = Reference Data Management encompass those typically smaller lists of data records that are referenced by master data and transaction data. These lists do not change often. They tend to be externally defined but can also be internally defined within each organization. Learn more in the post What is Reference Data Management (RDM)?

10 TLA

CDI = Customer Data Integration, which is considered as the predecessor to MDM, as the first MDMish solutions focussed on federating customer master data handled in multiple applications across the IT landscape within an enterprise. You may ask: What Happened to CDI?

CDP = Customer Data Platform is an emerging kind of solution that provides a centralized registry of all data related to parties regarded as (prospective) customers at an enterprise. Right now, we see such solutions coming both from MDM solution vendors and CRM vendors as reported in the post CDP: Is that part of CRM or MDM?

ADM = Application Data Management, which is about not just master data, but all critical data however limited to a single (suite of) application(s) at the time. ADM is an emerging term and we still do not have a well-defined market as examined in the post Who are the ADM Solution Providers?

PXM = Product eXperience Management is another emerging term that describes a trend to distance some PIM solutions from the MDM flavour and more towards digital experience / customer experience themes. Read more about it in the post What is PxM?

PDS = Product Data Syndication, which connects MDM, PIM (and other) solutions at each trading partner with each other within business ecosystems. As this is an area where we can expect future growth along with the digital transformation theme, you can get the details in the post What is Product Data Syndication (PDS)?

Combining Data Matching and Multidomain MDM

Data Matching GroupTwo of the most addressed data management topics on this blog is data matching and multidomain Master Data Management (MDM). In addition, I have also founded two LinkedIn Groups for people interested in one of or both topics.

The Data Matching Group has close to 2,000 members. In here we discus nerdy stuff as deduplication, identity resolution, deterministic matching using match codes, algorithms, pattern recognition, fuzzy logic, probabilistic learning, false negatives and false positives.

Check out the LinkedIn Data Matching Group here.

Multidomain MDM GroupThe Multi-Domain MDM Group has close to 2,500 members. In here we exchange knowledge on how to encompass more than a single master data domain in an MDM initiative. In that way the group also covers the evolution of MDM as the discipline – and solutions – has emerged from Customer Data Integration (CDI) and Product Information Management (PIM).

Check out the LinkedIn Multi-Domain MDM Group here.

The result of combining data matching and multi-domain MDM is golden records. The golden records are the foundation of having a 360-degree / single view of parties, locations, products and assets as examined in The Disruptive MDM / PIM / DQM List blog post Golden Records in Multidomain MDM.

The People Behind the MDM / PIM Tools

Over at the sister site, The Disruptive MDM / PIM List, there are some blog posts that are interviews with some of the people behind some of the most successful Master Data Management (MDM) and Product Information Management (PIM) tools.

People behind MDM tools

CEO & Founder Upen Varanasi of Riversand Technologies provided some insights about Riversand’s vision of the future and how the bold decisions he had made several years ago led to the company’s own transformational journey and a new MDM solution. Read more in the post Cloud multi-domain MDM as the foundation for Digital Transformation.

In a recent interview FX Nicolas, VP of Products at Semarchy, tells about his MDM journey and explains how the Semarchy Intelligent Data Hub™:

  • Extends the scope of data available via the data hub beyond core master data
  • Takes an end-to-end approach for the data management initiative
  • Transparently opens the initiative to the whole enterprise

Read the full interview here.

I hope to be able to present more people behind successful solutions on The Disruptive MDM / PIM List Blog.

Longlist, Shortlist and Proof of Concept

When selecting a tool for a Master Data Management (MDM) / Product Information Management (PIM) / Data Quality Management (DQM) solution you can:

  • Select a longlist of 5 to 10 solutions that you after some research narrow down to a shortlist and after some more thorough research you will from this select a solution for a PoC / contract.
  • Select a shortlist of 3 to 5 solutions and after some research select a solution for a PoC / contract.
  • Directly select a solution for a Proof of Concept (PoC) and Business Case.

How would you – or did you – select a tool?

 

By the way: There are also some different approaches to get the work done:

Longlist shortlist PoC

Why Multienterprise MDM will Underpin Digital Transformation

I read (and write) a lot about why Master Data Management (MDM) is a core capability you need to succeed in digital transformation.

Over at the Profisee blog there is a post about that, extending the capability to be multidomain MDM. The post is called The Role of Multi-Domain MDM in Digital Transformation.

Also, at the Reltio blog as part of the #ModernDataMasters series, Tony Saldanha, author of the book  Why Digital Transformations Fail, explains: “Look at master data in terms of the entire virtual company – the total supply chain including your clients and suppliers – and create an ecosystem to drive standards across that.”

Tony continues: “The investment in master data within ecosystems is going to increase dramatically. People are going to realise that most of the waste that happens is at the seams of large organisations – not having a common language between the accounts payable of one company and the accounts receivable of another company means both companies are wasting resources and money.”

Multienterprise MDM Digital Transformation

This way of looking at MDM as something that goes beyond each organization and evolves to be ecosystem wide is also called Multienterprise MDM.

In my eyes this is a very important aspect of using MDM within digital transformation. This theme is further examined in the post Why is Your Digital Ecosystem and MDM the Place to Begin in Digital Transformation?

Welcome Reifier on the Disruptive MDM / PIM List

The Disruptive MDM / PIM List is list of solutions in the Master Data Management (MDM), Product Information Management (PIM) and Data Quality Management (DQM) space.

The list presents both larger solutions that also is included by the analyst firms in their market reports and smaller solutions you do not hear so much about, but may be exactly the solution that addresses the specific challenges you have.

The latest entry on the list, Reifier, is one of the latter ones.

Matching data records and identifying duplicates in order to achieve a 360-degree view of customers and other master data entities is the most frequently mentioned data quality issue. Reifier is an artificial intelligence (AI) driven solution that tackles that problem.

Read more about Reifier here.

New entry Reifier

MDM / PIM solution ranking based on your context, scope and requirements

Popular Master Data Management (MDM) and Product Information Management (PIM) market reports with solution vendor rankings as the Gartner MDM Magic Quadrant, the Forrester MDM / PIM wave and the Information Difference MDM Landscape are generic, meaning they are not based on the specific context, scope and requirements that every organization on the look for a solution has.

So, no organization can just pick the solution positioned in the top right corner at their favourite analyst firm, neither make a shortlist with the solutions being most top-right or even a longlist with the well positioned solutions. They will need own research or consultancy from the report makers or consultancy firms – or yours truly.

Well, until now.

At The Disruptive MDM / PIM List there is a new service that, based on information about your context, scope and requirements, will provide a solution list that is fit for you.

Your solution list

Curious? Go to select your solution here.

Unifying Data Quality Management, MDM and Data Governance

During the end of last century data quality management started to gain traction as organizations realized that the many different applications and related data stores in operation needed some form of hygiene. Data cleansing and data matching (aka deduplication) tools were introduced.

In the 00’s Master Data Management (MDM) arised as a discipline encompassing the required processes and the technology platforms you need to have to ensure a sustainable level of data quality in the master data used across many applications and data stores. The first MDM implementations were focused on a single master data domain – typically customer or product. Then multidomain MDM (embracing customer and other party master data, location, product and assets) has become mainstream and we see multienterprise MDM in the horizon, where master data will be shared in business ecosystems.

MDM also have some side disciplines as Product Information Management (PIM), Digital Asset Management (DAM) and Reference Data Management (RDM). Sharing of product information and related digital assets in business ecosystems is here supported by Product Data Syndication.

Lately data governance has become a household term. We see multiple varying data governance frameworks addressing data stewardship, data policies, standards and business glossaries. In my eyes data governance and data governance frameworks is very much about adding the people side to the processes and technology we have matured in MDM and Data Quality Management (DQM). And we need to combine those themes, because It is not all about People or Processes or Technology. It is about unifying all this.

In my daily work I help both tool providers and end user organisations with all this as shown on the page Popular Offerings.

DG DQ and MDM

 

Top 15 MDM / PIM Requirements in RFPs

A Request for Proposal (RFP) process for a Master Data Management (MDM) and/or Product Information Management (PIM) solution has a hard fact side as well as there are The Soft Sides of MDM and PIM RFPs.

The hard fact side is the detailed requirements a potential vendor has to answer to in what in most cases is the excel sheet the buying organization has prepared – often with the extensive help from a consultancy.

Here are what I have seen as the most frequently included topics for the hard facts in such RFPs:

  • MDM and PIM: Does the solution have functionality for hierarchy management?
  • MDM and PIM: Does the solution have workflow management included?
  • MDM and PIM: Does the solution support versioning of master data / product information?
  • MDM and PIM: Does the solution allow to tailor the data model in a flexible way?
  • MDM and PIM: Does the solution handle master data / product information in multiple languages / character sets / script systems?
  • MDM and PIM: Does the solution have capabilities for (high speed) batch import / export and real-time integration (APIs)?
  • MDM and PIM: Does the solution have capabilities within data governance / data stewardship?
  • MDM and PIM: Does the solution integrate with “a specific application”? – most commonly SAP, MS CRM/ERPs, SalesForce?
  • MDM: Does the solution handle multiple domains, for example customer, vendor/supplier, employee, product and asset?
  • MDM: Does the solution provide data matching / deduplication functionality and formation of golden records?
  • MDM: Does the solution have integration with third-party data providers for example business directories (Dun & Bradstreet / National registries) and address verification services?
  • MDM: Does the solution underpin compliance rules as for example data privacy and data protection regulations as in GDPR / other regimes?
  • PIM: Does the solution support product classification and attribution standards as eClass, ETIM (or other industry specific / national standards)?
  • PIM: Does the solution support publishing to popular marketplaces (form of outgoing Product Data Syndication)?
  • PIM: Does the solution have a functionality to ease collection of product information from suppliers (incoming Product Data Syndication)?

Learn more about how I can help in the blog page about MDM / PIM Tool Selection Consultancy.

MDM PIM RFP Wordle