Governing Product Information

The title of this blog post is also the title of a presentation I will do at the 2019 Data Governance and Information Quality Conference in San Diego, US in June.

There is a little difference between how we can exercise data governance and information quality management when we are handling data about products versus handling the most common data domain being party data (customer, vendor/supplier, employee and other roles).

Multi-Domain MDM and Data Quality DimensionsThis topic was touched here on the blog in the post called Data Quality for the Product Domain vs the Party Domain.

The conference session will go through these topics:

  • Product master data vs. product information
  • How Master Data Management (MDM), Product Information Management (PIM) and Digital Asset Management (DAM) stick together
  • The roles of 1st party data, 2nd party data and 3rd party data in MDM, PIM and DAM
  • Business ecosystem wide product data management
  • Cross company data governance and information quality alignment

You can have a look at the full agenda for the DGIQ 2019 Conference here.

dgiq 2019

The relation between CX and MDM

The title of this blog post is also the title of a webinar I will be presenting on the 28th February 2019. The webinar is hosted by the visionary Multidomain MDM and PIM solution provider Riversand.

Customer experience (CX) and Master Data Management (MDM) must go hand in hand. Both themes involve multiple business units and digital environments within your enterprise and in the wider business ecosystem, where your enterprise operates. Master data is the glue that brings the data you hold about your customers together as well as the glue that combines the data you share about your product offering together.

To be successful within customer experience in the digital era you need classic master data outcomes as a 360-degree view of customers as well as complete and consistent product information. In other words, you need to maintain Golden Records in Multidomain MDM.

You also need to combine your customer data and your product data to get to the right level of personalization. Knowing about your customer, what he/she wants, and their buying behaviour is one side personalization. The other side is being able to match these data with relevant products that is described to a level that can provide reasonable logic against the behavioural data.

Furthermore, you need to be able to make sense of internal and external big data sources and relate those to your prospective and existing customers and the products they have an interest in. This quest stretches the boundaries of traditional MDM towards being a more generic data platform.

You can register to join the webinar here.

webinar data lake

Get Your Hands Dirty with Data

When working with data management – and not at least listening to and reading stuff about data management – there is in my experience too little work with the actual data going around out there.

I know this from my own work. Most often presentations, studies and other decision support in the data management realm is based on random anecdotes about the data rather than looking at the data. And don’t get me wrong. I know that data must be seen as information in context, that the processes around data is crucial, that the people working with data is key to achieving better data quality and much more cleverness not about the data as is.

data management wordsBut time and again I always realize that you get the best understanding about the data when getting your hands dirty with working with the data from various organizations. For me that have been when doing a deduplication of party master data, when calibrating a data matching engine for party master data against third party reference data, when grouping and linking product information held by trading partners, when relating other master data to location reference data and all these activities we do in order to raise data quality and get a grip on Master Data Management (MDM) and Product Information Management (PIM).

Well, perhaps it is just me and because I never liked real dirt and gardening.

B2C vs B2B in Product Information Management

The difference between doing Business-to-Consumer (B2C) or Business-to-Business (B2B) reflects itself in many IT enabled disciplines.

Yin and yangWhen it comes to Product Information Management (PIM) this is true as well. As PIM has become essential with the rise of eCommerce, some of the differences are inherited from the eCommerce discipline. There is a discussion on this in a post on the Shopify blog by Ross Simmonds. The post is called B2B vs B2C Ecommerce: What’s The Difference?

Some significant observations to go into the PIM realm is that for B2B, compared to B2C:

  • The audience is (on average) narrower
  • The price is (on average) higher
  • The decision process is (on average) more thoughtful

How these circumstances affect the difference for PIM was exemplified here on the blog in the post Work Clothes versus Fashion: A Product Information Perspective.

To sum up the differences I would say that some of the technology you need, for example PIM solutions, is basically the same but the data to go into these solutions must be more elaborate and stringent for B2B. This means that for B2B, compared to B2C, you (on average) need:

  • More complete and more consistent attributes (specifications, features, properties) for each product and these should be more tailored to each product group.
  • More complete and consistent product relations (accessories, replacements, spare parts) for each product.
  • More complete and consistent digital assets (images, line drawings, certificates) for each product.

How to achieve that involves deep collaboration in the supply chains of manufacturers, distributors and merchants. The solutions for that was examined in the post The Long Tail of Product Data Synchronization.

Flying by Ultima Thule and Data Management

Ultima Thule is a name for a distant place beyond the known world and the nickname of the most distant object in the solar system closely observed by a man-made object today the 1st January 2019. Before the flyby scientists were unsure if it was two objects, a peanut formed object or another shape. The images probing what it is will be downloaded during the next couple of months.

You can make many analogies between exploring space and data management. On this blog the journey has passed the similarity between Neutron Star Collision and Data Quality. The Gravitational Waves in the MDM World has been observed and so has the Gravitational Collapse in the PIM Space. The notion of A Product Information Management (PIM) Solar System has also been suggested.

Happy New Year and wishing you all well in the data management journey beyond Ultima Thule.

Ultima Thule
Source: Nasa via BBC

MDM and PIM Market Reports in 2018

There are many market reports covering the Master Data Management (MDM) and Product Information Management (PIM) market. Below you can find 4 of these coming from who is usually considered as the more reliable analyst houses around:

Forrester has not issued a report on the MDM market recently, but in June 2018 they published their PIM wave as told on the post There is no PIM quadrant, but there is a PIM wave.

Information Difference came out with their MDM market coverage as examined in the post MDM Vendor Landscape 2018.

Constellation Research revealed their top vendors in August as mentioned in the post Making Your MDM Vendor Longlist and Shortlist.

Gartner got their MDM quadrant finished in December as flashed in the post Movements in the Gartner MDM Magic Quadrant 2018. You will find vendor provided links to the Gartner report in the post Who Will Make the Next Disruption on the MDM Market?

MDM 2018

PS: You can meet some of the included vendors (and some of the upcoming ones) on The Disruptive Master Data Management Solutions List.

The Road from PIM to Multidomain MDM

The previous post on this blog was about the recent Gartner Magic Quadrant for Master Data Management Solutions. The post was called Who Will Make the Next Disruption on the MDM Market?

In a comment to this post Nadim observes that this Gartner quadrant is mixing up pure MDM players and PIM players.

That is true. It has always been a discussion point if one should combine or separate solutions for Master Data Management (MDM) and Product Information Management (PIM). This is a question to be asked by end user organizations and it is certainly a question the vendors on the market(s) ask themselves.

If we look at the vendors included in the 2018 Magic Quadrant the PIM part is represented in some different ways.

I would say that two of the newcomers, Viamedici and Contentserv (yellow dots in below figure), are mostly PIM players today. This is also mentioned as a caution by Gartner and is a reason for the current left-bottom’ish placement in the quadrant. But both companies want to be more multidomain MDM’ish.

PIM to MDM vendors

8 years ago, I was engaged at Stibo Systems as part of their first steps on the route from PIM to multidomain MDM. Enterworks and Riversand (the orange dots in above figure) is on the same road.

Informatica has taken a different path towards the same destination as they back in 2012 bought the PIM player Heiler. Gartner has some cautions about how well the MDM and PIM components makes up a whole in the Informatica offerings and similar cautions was expressed around the Forrester PIM Wave as seen in the comments to the post There is no PIM quadrant, but there is a PIM wave.

Two Forms of Narcissism within Business-to-Business

Narcissus-CaravaggioThe term narcissism originates from Greek mythology, where the young Narcissus fell in love with his own image reflected in a pool of water. While this is about how a natural person may behave it can certainly also be applied to how a company behaves.

Not to show empathy to customers

I think we all know the classic sales presentation with endless slides about how big and wonderful the selling company is and how fantastic the products they sell are. This approach contradicts everything we know about selling, which is to start with the needs and pain points at the buying company and then how the selling company effectively can fulfill the needs and make the pain points go away.

Not to show empathy to trading partners

While business outcomes originate from selling to your customers it certainly also is affected by how you treat your trading partners and how you can put yourself in their place.

An example close to me is exchange of product information (product data syndication) between trading partners. We often see solutions which is made to make it easy for you but then being difficult for your trading partner. This includes requiring your spreadsheet format to filled out by your trading partner, may be a customer data portal set up by a manufacturer or opposite a supplier data portal set up by a merchant. These are narcissistic dead ends as told in the post The Death Trap in Product Information Management: Your Customer/Supplier Portal.

The emphatic way forward is putting your company as being an active delegate in a business ecosystem as examined in post A Product Information Management (PIM) Solar System.

Product Data Lake is going to the next level

sdr
The path ahead

Until now my venture called Product Data Lake has been a rather technical quest. As with most start-ups the first years have been around building the actual software (in our case facilitated by Larion Computing in Vietnam), adjusting the market fit and run numerous trials with interested parties.

Now it is time to go to market for real. I am happy that another Henrik has joined as CEO and will emphasize on leading the marketing, sales and financial activities.

While I will be concentrating on the product strategy and product management activities it is time to recap the business outcomes we want our subscribers and partners to achieve. Let me express those towards three kinds of business partners:

Manufacturers and brand owners:

On the upstream side of Product Data Lake our goal is to let you as a manufacturer and/or brand owner:

  • Sell more: Your re-sellers will have the most complete, accurate and timely product information in front of their customers.
  • Reduce costs: Push your product information in one uniform way and let your re-sellers pull it in their many ways.

Our concept, using emerging technologies within Product Data Lake, will free you from applying many different solutions to providing product information to your re-sellers. You will avoid errors. You will be able to automate the processes and you will be easy to do business with in the eyes of your trading partners.

The people who will use your products want to get complete product information when making the buying decision wherever they are in the supply chain.

You can follow the news stream for this on our LinkedIn showcase page called Product Data Push.

Merchants (dealers and retailers):

On the downstream side of Product Data Lake our goal is to let you as a merchant (dealer or retailer) gain substantial business outcome.

  • You will sell more by having the most complete, accurate and timely product information in front of your online customers when they make self-service buying decisions.
  • You will reduce costs as you can pull product information in one uniform way and let your suppliers push it in their many ways. Hereby you can automate the processes, avoid errors and reduce product returns.

Our solution, using emerging technologies within Product Data Lake, will make you be easy to do business with in the eyes of your suppliers and make your product information transform into a powerful weapon in the quest for winning more online market share.

The people who may buy your product range deserves to know all about it and wants to get that information when making the buying decision. Remember: 81 % of visitors will leave a web-shop with incomplete product information.

You can follow the news stream for this on our LinkedIn showcase page called Product Data Pull.

Technology and service partners:

Ambassadors at Product Data Lake can sign up subscribers, assisting these subscribers in uploading their relevant product information portfolio to Product Data Lake and assisting these subscribers in linking their product information with the product information at their trading partners. As an ambassador, you will:

  • Have the opportunity to work with a big data solution within Product Information Management.
  • Have the opportunity to make data mapping and/or data integration services and cross-sell of other services for subscribers in a whole supply ecosystem.
  • Get 25 % kickback on new subscriptions in a potentially exponentially growing subscriber base in supply ecosystems

As Reservoir you can bring new life into product data portals and pools. Product Data Lake is a unique opportunity for service providers with product data portfolios for utilizing modern data management technology and offer a comprehensive way of linking, collecting and distributing product data within the business processes used by subscribers. Signing up as reservoir is free.

The linking theme also related to applying artificial intelligence / machine learning to mapping between the different product information taxonomies in use at trading partners, where we collaborate with business partners who provide such capabilities.

You can follow the news stream for this on our LinkedIn showcase page called Product Data Link.

Digitalization has Put Data in the Forefront

20 years ago, when I started working as a contractor and entrepreneur in the data management space, data was not on the top agenda at many enterprises. Fortunately, that has changed.

An example is displayed by Schneider Electric CEO Jean-Pascal Tricoire in his recent blog post on how digitization and data can enable companies to be more sustainable. You can read it on the Schneider Electric Blog in the post 3 Myths About Sustainability and Business.

Manufacturers in the building material sector naturally emphasizes on sustainability. In his post Jean-Pascal Tricoire says: “The digital revolution helps answering several of the major sustainability challenges, dispelling some of the lingering myths regarding sustainability and business growth”.

One of three myths dispelled is: Sustainability data is still too costly and time-consuming to manage.

From my work with Master Data Management (MDM) and Product Information Management (PIM) at manufacturers and merchants in the building material sector I know that managing the basic product data, trading data and customer self-service ready product data is hard enough. Taking on sustainability data will only make that harder. So, we need to be smarter in our product data management. Smart and sustainable homes and smart sustainable cities need smart product data management.

In his post Jean-Pascal Tricoire mentions that Schneider Electric has worked with other enterprises in their ecosystem in order to be smarter about product data related to sustainability. In my eyes the business ecosystem theme is key in the product data smartness quest as pondered in the post about How Manufacturers of Building Materials Can Improve Product Information Efficiency.

MDMDG 2013 wordle