Social PIM, Take 2

My first blog post on Social PIM (Social Product Information Management) was over 4 years ago.

take-2Since then Product Data Lake has been launched. Product Data Lake resembles a social network as you connect with your trading partners from the real world in order to collaborate on getting complete and accurate product information from the manufacturer to the point-of-sales.

I would love to see you, my blog readers, become involved. The options are:

Interenterprise Data Sharing and the 2016 Data Quality Magic Quadrant

dqmq2016The 2016 Magic Quadrant for Data Quality Tools by Gartner is out. One way to have a free read is downloading the report from Informatica, who is the most-top-right vendor in the tool vendor positioning.

Apart from the vendor positioning the report as always contains valuable opinions and observations about the market and how these tools are used to achieve business objectives.

Interenterprise data sharing is the last mentioned scenario besides BI and analytics (analytical scenarios), MDM (operational scenarios), information governance programs, ongoing operations and data migrations.

Another observation is that 90% of the reference customers surveyed for this Magic Quadrant consider party data a priority while the percentage of respondents prioritizing the product data domain was 47%.

My take on this difference is that it relates to interenterprise data sharing. Parties are per definition external to you and if your count of business partners (and B2C customers) exceeds some thousands (that’s the 90%), you need some of kind of tool to cope with data quality for the master data involved. If your product data are internal to you, you can manage data quality without profiling, parsing, matching and other core capabilities of a data quality tool.  If your product data are part of a cross company supply chain, and your count of products exceeds some thousands (that’s the 47%), you probably have issues with product data quality.

In my eyes, the capabilities of a data quality tool will also have to be balanced differently for product data as examined in the post Multi-Domain MDM and Data Quality Dimensions.

A System of Engagement for Business Ecosystems

Master Data Management (MDM) is increasingly being about supporting systems of engagement in addition to the traditional role of supporting systems of record. This topic was first examined on this blog back in 2012 in the post called Social MDM and Systems of Engagement.

The best known systems of engagement are social networks where the leaders are Facebook for engagement with persons in the private sphere and LinkedIn for engagement with people working in or for one or several companies.

But what about engagement between companies? Though you can argue that all (soft) engagement is neither business-to-consumer (B2C) nor business-to-business (B2B) but human-to-human (H2H), there are some hard engagement going on between companies.

pdl-whyOne of the most important ones is exchange of product information between manufacturers, distributors, resellers and large end users of product information. And that is not going very well today. Either it is based on fluffy emailing of spreadsheets or using rigid data pools and portals. So there are definitely room for improvement here.

At Product Data Lake we have introduced a system of engagement for companies when it comes to the crucial task of exchanging product information between trading partners. Read more about that in the post What a PIM-2-PIM Solution Looks Like.

Is blockchain technology useful within MDM?

This question was raised on this blog back in January this year in the post Tough Questions About MDM.

Since then the use of the term blockchain has been used more and more in general and related to Master Data Management (MDM). As you know, we love new fancy terms in our else boring industry.

blockchainHowever, there are good reasons to consider using the blockchain approach when it comes to master data. A blockchain approach can be coined as centralized consensus, which can be seen as opposite to centralized registry. After the MDM discipline has been around for more than a decade, most practitioners agree that the single source of truth is not practically achievable within a given organization of a certain size. Moreover, in the age of business ecosystems, it will be even harder to achieve that between trading partners.

This way of thinking is at the backbone of the MDM venture called Product Data Lake I’m working with right now. Yes, we love buzzwords. As if cloud computing, social network thinking, big data architecture and preparing for Internet of Things wasn’t enough, we can add blockchain approach as a predicate too.

In Product Data Lake this approach is used to establish consensus about the information and digital assets related to a given product and each instance of that product (physical asset or thing) where it makes sense. If you are interested in how that develops, why not follow Product Data Lake on LinkedIn.

Bookmark and Share

Adding Things to Product Data Lake

Product Data Lake went live last month. Nevertheless, we are already planning the next big things in this cloud service for sharing product data. One of them is exactly things. Let me explain.

Product data is usually data about a product model, for example a certain brand and model of a pair of jeans, a certain brand and model of a drilling machine or a certain brand and model of a refrigerator. Handling product data on the model level within business ecosystems is hard enough and the initial reason of being for Product Data Lake.

stepping_stones_oc

However, we are increasingly required to handle data about each instance of a product model. Some use cases I have come across are:

  • Serialization, which is numbering and tracking of each physical product. We know that from having a serial number on our laptops and another example is how medicine packs now will be required to be serialized to prevent fraud as described in the post Spectre vs James Bond and the Unique Product Identifier.
  • Asset management. Asset is kind of the fourth domain in Master Data Management (MDM) besides party, product and location as touched in the post Where is the Asset. Also Gartner, the analyst firm, usually in theory (and also soon in practice in their magic quadrants) classifies product and asset together as thing opposite to party. Anyway, in asset management you handle each physical instance of the product model.
  • Internet of Things (IoT) is, according to Wikipedia, the internetworking of physical devices, vehicles (also referred to as “connected devices” and “smart devices”), buildings and other items—embedded with electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange data.

Fulfilling the promise of IoT, and the connected term Industry 4.0, certainly requires common understood master data from the product model over serialization and asset management as reported in the post Data Quality 3.0 as a stepping-stone on the path to Industry 4.0.

Bookmark and Share

Approaches to Sharing Product Information in Business Ecosystems

One of the most promising aspects of digitalization is sharing information in business ecosystems. In the Master Data Management (MDM) realm, we will in my eyes see a dramatic increase in sharing product information between trading partners as touched in the post Data Quality 3.0 as a stepping-stone on the path to Industry 4.0.

Standardization (or standardisation)

A challenge in doing that is how we link the different ways of handling product information within each organization in business ecosystems. While everyone agrees that a common standard is the best answer we must on the other hand accept, that using a common standard for every kind of product and every piece of information needed is quite utopic. We haven’t even a common uniquely spelled term in English.

Also, we must foresee that one organization will mature in a different pace than another organisation in the same business ecosystem.

Product Data Lake

These observations are the reasons behind the launch of Product Data Lake. In Product Data Lake we encompass the use of (in prioritized order):

  • The same standard in the same version
  • The same standard in different versions
  • Different standards
  • No standards

In order to link the product information and the formats and structures at two trading partners, we support the following approaches:

  • Automation based on product information tagged with a standard as explained in the post Connecting Product Information.
  • Ambassadorship, which is a role taken by a product information professional, who collaborates with the upstream and downstream trading partner in linking the product information. Read more about becoming a Product Data Lake ambassador here.
  • Upstream responsibility. Here the upstream trading partner makes the linking in Product Data Lake.
  • Downstream responsibility. Here the downstream trading partner makes the linking in Product Data Lake.

cross-company-data-governanceData Governance

Regardless of the mix of the above approaches, you will need a cross company data governance framework to control the standards used and the rules that applies to the exchange of product information with your trading partners. Product Data Lake have established a partnership with one of the most recommended authorities in data governance: Nicola Askham – the Data Governance Coach.

For a quick overview please have a look at the Cross Company Data Governance Framework.

Please request more information here.

Bookmark and Share

Data Quality 3.0 as a stepping-stone on the path to Industry 4.0

The title of this blog post is a topic on my international keynote at the Stammdaten Management Forum 2016 in Düsseldorf, Germany on the 8th November 2016. You can see the agenda for this conference that starts on the 7th and end the on 9th here.

stepping_stones_ocData Quality 3.0 is a term I have used over the years here on the blog to describe how I see data quality, along with other disciplines within data management, changing. This change is about going from focusing on internal data stores and cleansing within them to focusing on external sharing of data and using your business ecosystem and third party data to drastically speed up data quality improvement.

Industry 4.0 is the current trend of automation and data exchange in manufacturing technologies. When we talk about big data most will agree that success with big data exploitation hinges on proper data quality within master data management. In my eyes, the same can be said about success with industry 4.0. The data exchange that is the foundation of automation must be secured by common understood master data.

So this is the promising way forward: By using data exchange in business ecosystems you improve data quality of master data. This improved master data ensures the successful data exchange within industry 4.0.

Bookmark and Share

Emerging Database Technologies for Master Data

The MDM Landscape Q2 2016 from Information Difference is out. MDM vendors usually celebrate these yearly analyst reports with tweets and posts about their prominent position, like Informatica trailed by Stibo Systems for being in the top right corner and Agility Mulitichannel closely followed by Orchestra Networks for having the happiest customers.

The Information DifferenceBut the market analysis and the trends observed is good stuff as well.

This year I noticed the trend in the underlying technology used by MDM vendors to store the master data. The report says: “Some vendors have also decided to cut their ties with the relational database platform that has traditionally been the core storage mechanism for master data. Certain types of analysis e.g. of relationships between data, can be well handled by other types of emerging databases, such as graph databases like Neo4J and NoSQL databases like MongoDB. One vendor has recently switched its underlying platform entirely away from relational, and others have similar plans.”

While we usually see graph databases and NoSQL databases as something to use for analytical purposes, the trend of moving master data platforms to these technologies implies that operational purposes will be based on these technologies too.

This is close to me as the master data service I’m work with right now is based on storing data for operational purposes in MongoDB (in the cloud).

Bookmark and Share

Social Selling: Does it Work?

Social Master Data Management (Social MDM) has been on my radar for quite a long time. Social MDM is the natural consequence of Social CRM and social selling.

Social MDMNow social selling has become very close to me in the endeavour of putting a B2B (Business-to-Business) cloud service called Product Data Lake on the market.

In our quest to do that we rely on social selling for the following reasons:

  • If we do not think too much about, that time is money, social selling is an inexpensive substitution for a traditional salesforce, not at least when we are targeting a global market.
  • We have a subscription model with a very low entry level, which really does not justify many onsite meetings outside downtown Copenhagen – but we do online meetings based on social engagement though 🙂
  • The Product Data Lake resembles a social network itself by relying on trading partnerships for exchange of product information.

I will be keen to know about your experiences and opinions about social selling. Does it work? Does it pay off to sell socially? Does it feel good to buy socially?

Bookmark and Share