How Manufacturers of Building Materials Can Improve Product Information Efficiency

Building materials is a very diverse product group. Even within a manufacturing enterprise there may be considerable variances in what kind of product information you need for different product groups. If production is taking place on plants around the world, then local demands and cultural differences is another source of diversity in how product information is handled.

In many cases building materials are not sold directly to end users, but are forwarded in the supply chain to re-sellers being distributors/wholesalers, merchants/dealers and marketplaces. These trading partners each have their range of products and specific requirements for product information which makes it very hard for the manufacturer to prepare product information that fits all.

The IT enabled discipline aimed at solving such challenges is called product data syndication. There are namely these three kinds of product data syndication relevant to manufacturers:

  • Enterprise wide product data syndication aiming at linking, transforming and consolidating product information created by various business units and production sites around the world. The goal is to have consistent, accurate and timely information ending up in one place, often being an in-house Product Information Management (PIM) or Master Data Management (MDM) solution.
  • Ecosystem wide product data syndication push aiming at providing product information to re-sellers in a uniform way. On the other hand, it should be possible for the diverse crowd of re-sellers to pull that information adhering to each one’s requirements for format, completeness and conformity at a certain time.
  • Ecosystem wide product data syndication pull also in many cases applies to a manufacturer. It is not unusual that a manufacturer complements the own produced product range with special products supplied from other manufacturers, where product information must be provided by those. In addition to that manufacturers buys raw materials, spare parts for machinery and other products where product information is needed when the surrounding processes should be automated.

At Product Data Lake, we offer a solution to these challenges. We emphasize on these capabilities:

  • Product Data Quality aiming at improvements of completeness of product data, as well as the accuracy, timeliness, consistency and conformity of the product information shared with trading partners and end users.
  • Product Data Syndication Freedom, as the solution is suited for consolidating enterprise wide diversities and pushing information to trading partners in a uniform way while making it possible for trading partners to pull the product information in their many ways.

Learn more about the solution and the benefits for manufacturers of building materials on the Product Data Push site.

Materials

New Routes for Products. New Routes for Product Information

One of the news this week was that Maersk for the first time is taking a large container ship from East Asia to Europe using a Northern Route through the Arctic waters as told in this Financial Times article.

Arctic route

The purpose of this trip is to explore the possibility of avoiding the longer Southern Route including shoehorning the sea traffic through the narrow Suez Canal. A similar opportunity exists around North America as an alternative to going through The Panama Canal.

Similar to moving products and finding new routes for that we may also explore new routes when it comes to moving information about products. Until now the possibilities, besides cumbersome exchange of spreadsheets, have been to shoehorn product information from the manufacturer into a consensus-based data portal or data pool from where the merchant can fetch the information in accurate the same shape as his competitors does.

At Product Data Lake we have explored shorter, more agile and diverse new routes for that. We call it Product Data Syndication Freedom.

MDM Hype Cycle, GDSN, Data Quality, Multienterprise MDM and Product Data Syndication

Gartner, the analyst firm, has a hype cycle for Information Governance and Master Data Management.

Back in 2012 there was a hype cycle for just Master Data Management. It looked like this:

Hype cycle MDM 2012
Source: Gartner

I have made a red circle around the two rightmost terms: “Data Quality Tools” and “Information Exchange and Global Data Synchronization”.

Now, 6 years later, the terms included in the cycle are the below:

Hype Cycle MDM 2018
Source: Gartner

The two terms “Data Quality Tools” and “Information Exchange and Global Data Synchronization” are not mentioned here. I do not think it is because the they ever fulfilled their purpose. I think they are being supplemented by something new. One of these terms that have emerged since 2012 is, in red circle, Multienterprise MDM.

As touched in the post Product Data Quality we have seen data quality tools in action for years when it comes to customer (or party) master data, but not that much when it comes to product master data.

Global Data Synchronization has been around the GS1 concept of GDSN (Global Data Synchronization Network) and exchange of product data between trading partners. However, after 40 years in play this concept only covers a fraction of the products traded worldwide and only for very basic product master data. Product data syndication between trading partners for a lot of product information and related digital assets must still be handled otherwise today.

In my eyes Multienterprise MDM comes to the rescue. This concept was examined in the post Ecosystem Wide MDM. You can gain business benefits from extending enterprise wide product master data management to be multienterprise wide. This includes:

  • Working with the same product classifications or being able to continuously map between different classifications used by trading partners
  • Utilizing the same attribute definitions (metadata around products) or being able to continuously map between different attribute taxonomies in use by trading partners
  • Sharing data on product relationships (available accessories, relevant spare parts, updated succession for products, cross-sell information and up-sell opportunities)
  • Having shared access to latest versions of digital assets (text, audio, video) associated with products.

This is what we work for at Product Data Lake – including Machine Learning Enabled Data Quality, Data Classification, Cloud MDM Hub Service and Multienterprise Metadata Management.

Product Data Syndication Freedom

When working with product data syndication in supply chains the big pain is that data standards in use and the preferred exchange methods differ between supply chain participants.

As a manufacturer you will have hundreds of re-sellers who probably have data standards different from you and most likely wants to exchange data in a different way than you do.

As a merchant you will have hundreds of suppliers who probably have data standards different from you and most likely wants to exchange data in a different way than you do.

The aim of Product Data Lake is to take that pain away from both the manufacturer side and the merchant side. We offer product data syndication freedom by letting you as manufacturer push product information using your data standards and your preferred exchange method and letting you as a merchant pull product information using your data standards and your preferred exchange method.

Product Data SyndicationIf you want to know more. Get in contact here:

Ecosystem Wide Product Information Management

The concept of doing Master Data Management (MDM) not only enterprise wide but ecosystem wide was examined in the post Ecosystem Wide MDM.

As mentioned, product master data is an obvious domain where business outcomes may occur first when stretching your digital transformation to encompass business ecosystems.

The figure below shows the core delegates in the ecosystem wide Product Information Management (PIM) landscape we support at Product Data Lake:

Ecosystem Wide PIM.png

Your enterprise is in the centre. You may have or need an in-house PIM solution where you manipulate and make product information more competitive as elaborated in the post Using Internal and External Product Information to Win.

At Product Data Lake we collaborate with providers of Artificial Intelligence (AI) capabilities and similar technologies in order to improve data quality and analyse product information.

As shown in the top, there may be a relevant data pool with a consensus structure for your industry available, where you exchange some of product information with trading partners. At Product Data Lake we embrace that scenario with our reservoir concept.

Else, you will need to make partnerships with individual trading partners. At Product Data Lake we make that happen with a win-win approach. This means, that providers can push their product information in a uniform way with the structure and with the taxonomy they have. Receivers can pull the product information in a uniform way with the structure and with the taxonomy they have. This product data syndication concept is outlined in the post Sell more. Reduce costs.

Product Data Lake Behind the Scenes

Product Data Lake is a cloud service for exchanging product information (product data syndication) between manufacturers, distributors and merchants. When telling about the service I usually concentrate on the business benefits and how the service will make you sell more and reduce costs.

However, there will always be one or two persons in the audience who wants to know about the technology behind. And for sure, this is important too.

The service is built using some of the newest and best-of-breed technologies available for this purpose today. This includes Amazon Elastic Computing Cloud for hosting the public cloud version, MongoDB for storing data, RabbitMQ for handling data streams and ElasticSearch for finding data.

PDL Architecture

You can dive into the geeky parts in this PDF document: Product Data Lake Architecture.

Three Major Sectors within Product Information Exchange

When working with Product Information Management (PIM) and not at least with product information exchange (product data syndication) between trading partners, I have noticed three major sectors where the requirements and means differs quite a bit.

These sectors are:

  • Food, beverage at pharmaceuticals: These are highly regulated sectors where the rules for taxonomy, completeness and exchange formats are advanced. Exchange standards and underpinning services as GS1/GDSN are well penetrated at least for basic data elements among major players. This sector counts for circa 1/6 of the world trade.
  • Fashion, books and mainstream electronics: The products within this sector can be described with common accepted taxonomies and do not differ that much though there certainly are room for more common adhered standards in some areas. The trade here is becoming more penetrated by marketplaces with their specific product information requirements. This sector counts for circa 1/6 of the world trade.
  • The rest (including building materials, special electronics, machinery, homeware): This is a diverse segment of products groups and the product groups themselves are diverse. The requirements for product information completeness and other data quality dimensions are overwhelming and the choice of standards are many, so most often two trading partners will be on different pages. This sector counts for circa 2/3 of the world trade.

Note: Automotive (vehicles) is a special vertical, where the main products (for example cars) resembles mainstream electronics and all the spare parts resembles special electronics. Some retailers (like department stores) covers all sectors and therefore need hybrid solutions to their product information exchange handling challenges.

The main drivers for better product information handling are compliance – not at least within food, beverage and pharmaceuticals – and self-service purchasing (as in ecommerce), where the latter has raged many years within fashion, books and mainstream electronics and now also is raising in more B2B (business-to-business) biased product groups as building materials, special electronics and machinery.

Learn more about how to tackle these diverse needs in product information exchange in the article and discussion about Product Data Lake.

segments.png

The Wide End-to-End Solution for Product Information Management (PIM)

The term End-to-End is used a lot in marketing jargon. Now, I will jump on that wagon too.

In reality, no solution will be an End-to-End solution for all your business needs. Therefore, my take will merely be to cast some light on an End-to-End need for which there are only very scattered solutions today.

If we look at Product Information Management (PIM) there are many good solutions for taking care of the End-to-End needs within your organisation. The aim is to gather the product information that exist within your organisation in various silos, have one trusted place for all this information and being able to publish this information in a consistent way across all sales channels – the omnichannel theme.

However, product information does in many cases not live just within your organization. In most cases, it lives in a business ecosystem of manufacturers, distributors, merchants and large end users.

Therefore we need an End-to-End solution for product information exchange (product data syndication) that encompasses the path from manufacturers over distributors to merchants and large end users and in some cases the way back.

Whether you are a manufacturer, distributor, merchant, large end user or a provider of tools and services for product information you can join the business ecosystem oriented End-to-End solution for product information. Please find some more information about Product Data Lake here.

As a manufacturer, you can find your benefits on the Product Data Push site here.

As a merchant, you can find your benefits on the Product Data Pull site here.

If you are a vendor in the Product Information Management space, you can join forces with us as explained here.

pdl-top