The Disruptive MDM/PIM/DQM List 2022: Informatica

The next vendor to be included on The Disruptive MDM / PIM / DQM List 2022 is Informatica.

Informatica has been a leader on the Master Data Management (MDM), Product Information Management (PIM) and Data Quality Management (DQM) space for many years latest as seen in their 6th time front position on the Gartner MDM quadrant.

Their success is also apparent in the recent Earnings Report and their return to the public markets.

You can learn more about Informatica here.

Welcome Viamedici on The Disruptive MDM/PIM/DQM List

I am pleased to welcome Viamedici on The Disruptive MDM/PIM/DQM List and thus also one of the innovative solutions to be on the 2022 version.

During the recent years I have followed Viamedici as a very interesting solution among those Product Information Management (PIM) vendors who are developing into multidomain Master Data Management (MDM) vendors.

Their PIM solution has some unique capabilities around managing complex products and real-time handling of large numbers of products, attributes, relations, and digital assets. These capabilities can be utilized to cover extended MDM where multidomain MDM goes beyond traditional customer, supplier, and product MDM.

You can learn more about Viamedici here.

How MDM Inflates

Since the emerge of Master Data Management (MDM) back in 00’s this discipline has taken on more and more parts of the also evolving data management space.

The past

It started with Customer Data Integration (CDI) being addressing the common problem among many enterprises of having multiple data stores for customer master data leading to providing an inconsistent face to the customer and lack of oversight of customer interactions and insights.

In parallel a similar topic for product master data was addressed by Product Information Management (PIM). Along with the pains of having multiple data stores for product data the rise of ecommerce lead to a demand for handling much more detailed product data in structural way than before.

While PIM still exist as an adjacent discipline to MDM, CDI mutated into customer MDM covering more aspects than the pure integration and consolidation of customer master data as for example data enrichment, data stewardship and workflows. PIM has thrived either within, besides – or without – product MDM while supplier MDM also emerged as the third main master data domain.   

The present

Today many organizations – and the solution providers – either grow their MDM capabilities into a multidomain MDM concept or start the MDM journey with a multidomain MDM approach. Multidomain Master Data Management is usually perceived as the union of Customer MDM, Supplier MDM and Product MDM. It is. And it is much more than that as explained in the post What is Multidomain MDM?

As part of a cross-domain thinking some organizations – and solution providers – are already preparing for the inevitable business partner domain as pondered in the post The Intersection of Supplier MDM and Customer MDM.

The PIM discipline has got a subdiscipline called Product Data Syndication (PDS). While PIM basically is about how to collect, enrich, store, and publish product information within a given organization, PDS is about how to share product information between manufacturers, merchants, and marketplaces.

The future

Interenterprise MDM will be the inflated next stage of the business partner MDM and Product Data Syndication (PDS) theme. This is about how organizations can collaborate by sharing master data with business partners in order to optimize own master data and create new data driven revenue models together with business partners.

It is in my eyes one of the most promising trends in the MDM world. However, it is not going to happen tomorrow. The quest of breaking down internal data and knowledge silos within organizations around is still not completed in most enterprises. Nevertheless, there is a huge business opportunity to pursue for the enterprises who will be in the first wave of interenterprise data sharing through interenterprise MDM.

Extended MDM is the inflated next scope of taking other data domains than customer, supplier, and product under the MDM umbrella.

Reference Data Management (RDM) is increasingly covered by or adjacent to MDM solutions.

Also, we will see handling of locations, assets, business essential objects and other digital twins being much more intensive within the MDM discipline. Which entities that will be is industry specific. Examples from retail are warehouses, stores, and the equipment within those. Examples from pharma are own and affiliated plants, hospitals and other served medical facilities. Examples from manufacturing are plants, warehouses as well as the products, equipment and facilities where their produced products are used within.

The handling of all these kind of master data on the radar of a given organization will require interenterprise MDM collaboration with the involved business partners.

Organizations who succeed in extending the coverage of MDM approaches will be on the forefront in digital transformation.

Augmented MDM is the inflated next level of capabilities utilized in MDM as touched in the post The Gartner MDM MQ of December 2021 and Augmented MDM. It is a compilation of utilizing several trending technologies as Machine Learning (ML), Artificial Intelligence (AI), graph approaches as knowledge graph with the aim of automating MDM related processes.

Metadata management will play a wider and more essential role here not at least when augmented MDM and extended MDM is combined.    

Mastering this will play a crucial role in the future ability to launch competitive new digital services.

The Gartner MDM MQ of December 2021 and Augmented MDM

The latest Gartner Magic Quadrant for Master Data Management Solutions is out.

If we look at the vendor positioning not much has happened since the January 2021 quadrant. Tamr is a new solution in the quadrant while Cluedin and Pimcore are now listed under honorable mentions. Informatica is as always closest to the top-right corner.

Augmented data management and augmented MDM are the new main buzzwords as seen in the strategic planning assumptions. Also, the vendors capabilities for doing the augmented stuff are stated as strengths and cautions.

So, what is this augmented data management and augmented MDM by the way? It is in short a compilation of utilizing several trending technologies as Machine Learning (ML), Artificial Intelligence (AI), graph approaches (as examined in the post MDM and Knowledge Graph) with the aim of automating and scaling data management including MDM.

If this will be the final shape of whatever augmented MDM is though in my eyes a bit unsure and even Gartner has doomed augmented MDM to be obsolete before reaching the plateau of productivity in their latest hype cycle for Data and Analytics Governance and Master Data Management. Anyway, I am sure we will see some form of extended MDM covering more domains than customer, supplier and product and utilizing the emerging technologies.

If you want to read the full Gartner report for free, you can get it from Informatica here.

What is Collaborative Product Data Syndication?

Product Data Syndication (PDS) is a sub discipline within Product Information Management (PIM) as explained in the post What is Product Data Syndication (PDS)?

Collaborative PDS can be achieved at scale with a specialized product data syndication service where the manufacturer can push product information according to their definitions and the merchant can pull linked and transformed product information according to their definitions.

With Collaborative Product Data Syndication, you can get the best of two worlds:

  • You can have the market standard that makes you not falling behind your competitors.
  • However, you can also have unique content coming through that puts you ahead of your competitors.

The advantages of collaborative PDS versus other PDS approaches was examined in the post Collaborative Product Data Syndication vs Data Pools and Marketplaces.

The Product Data Lake solution I am involved with utilizes that data lake concept to handle the complexities of having many different data standards for product information in play within supply chains and encompass the many different preferences for exchange methods.

Our approach is not to reinvent the wheel, but to collaborate with partners in the industry. This includes:
·       Experts within a type of product as building materials and sub-sectors in this industry, machinery, chemicals, automotive, furniture and home-ware, electronics, work clothes, fashion, books and other printed materials, food and beverage, pharmaceuticals and medical devices. You may be a specialist in certain standards for product data. You will link the taxonomy in use at two trading partners or within a larger business ecosystem.
·       Product data cleansing specialists who have proven track records in optimizing product master data and product information. You will prepare the product data portfolio at a trading partner and extend the service to other trading partners or within a larger business ecosystem.
·       System integrators who can integrate product data syndication flows into Product Information Management (PIM) and other solutions at trading partners and consult on the surrounding data quality and data governance issues. You will enable the digital flow of product information between two trading partners or within a larger business ecosystem.
·       Tool vendors who can offer in-house Product Information Management (PIM) / Master Data Management (MDM) solutions or similar solutions in the ERP and Supply Chain Management (SCM) sphere. You will be able to provide, supplement or replace customer data portals at manufacturers and supplier data portals at merchants and thus offer truly automated and interactive product data syndication functionality.
·       Technology providers with data governance solutions, data quality management solutions and Artificial Intelligence (AI) / machine learning capacities for classifying and linking product information to support the activities made by other delegates and subscribers.
·       Reservoirs, as Product Data Lake is a unique opportunity for service providers with product data portfolios (data pools and data portals) for utilizing modern data management technology and offer a comprehensive way of collecting and distributing product data within the business processes used by subscribers.

The Disruptive MDM/PIM/DQM List 2022: Reltio

Today it is time to present the fourth vendor to be on The Disruptive MDM / PIM / DQM List in 2022. That is Reltio.

I have been following Reltio here on the blog since 2013 as this MDM vendor has grown from an entrepreneur to a recognized solution provider recently manifested as being a leader in the Forrester MDM Wave and receiving 120 M USD in funding last month.

Reltio is a multi-domain cloud-native MDM solution covering a broad range of MDM capabilities.

You can learn more about Reltio here.

MDM and Knowledge Graph

As examined in a previous post with the title Data Fabric and Master Data Management, the use of the knowledge graph approach is on the rise.

Utilizing a knowledge graph has an overlap with Master Data Management (MDM).

If we go back 10 years MDM and Data Quality Management had a small niche discipline that was called (among other things) entity resolution as explored in the post Non-Obvious Entity Relationship Awareness. The aim of this was the same that today can be delivered in a much larger scale using knowledge graph technology.

During the past decade there have been examples of using graph technology for MDM as for example mentioned in the post Takeaways from MDM Summit Europe 2016. However, most attempts to combine MDM and graph have been to visualize the relationships in MDM using a graph presentation.

When utilizing knowledge graph approaches you will be able to detect many more relationships than those that are currently managed in MDM. This fact is the foundation for a successful co-existence between MDM and knowledge graph with these synergies:

  • MDM hubs can enrich knowledge graph with proven descriptions of the entities that are the nodes (vertices) in the knowledge graph.
  • Additional detected relationships (edges) and entities (nodes) from the knowledge graph that are of operational and/or general analytic interest enterprise wide can be proven and managed in MDM.

In this way you can create new business benefits from both MDM and knowledge graph.

The Disruptive MDM/PIM/DQM List 2022: Magnitude Software

In the round of presenting the solutions for The Disruptive MDM / PIM / DQM List 2022 the next vendor is Magnitude Software.

Magnitude Software has two solutions on the list:

  • Kalido MDM where you can define and model critical business information from any domain – customer, product, financial, vendor, supplier, location and more – to create and manage accurate, integrated, and governed data that business users trust.
  • Agility Multichannel PIM which has the capabilities to get products to market faster with a simple-to-use, comprehensive Product Information Management solution that makes it easy to support commerce across digital and traditional channels.

Learn more about Kalido MDM here and Agility Multichannel PIM here.

What’s in a Data Governance Framework?

When you are going to implement data governance one key prerequisite is to work with a framework that outlines the key components of the implementation and ongoing program.

There are many frameworks available. A few are public while most are legacy frameworks provided by consultancy companies.

Anyway, the seven main components that you will (or should) see in a data governance framework are these:

  • Vision and mission: Formalizing a statement of the desired outcome, the business objectives to be reached and the scope covered.
  • Organization: Outlaying how the implementation and the continuing core team is to be organized, their mandate and job descriptions as well as outlaying the forums needed for business engagement.
  • Roles and responsibilities: Assigning the wider roles involved across the business often set in a RACI matrix with responsible, accountable, to be consulted and to be informed roles for data domains and the critical data elements within.
  • Business Glossary: Creation and maintenance of a list of business terms and their definitions that must be used to ensure the same vocabulary are used enterprise-wide when operating with and analyzing data.
  • Data Policies and Data Standards: Documentation of the overarching data policies enterprise-wide and for each data domain and the standards for the critical data elements within.
  • Data Quality Measurement: Identification of the key data quality indicators that support general key performance indicators in the business and the desired goals for these.
  • Data Innovation Roadmap: Forecasting the future need of new data elements and relationships to be managed to support key business drivers as for example digitalization and globalization.

Other common components in and around a data governance framework are the funding/business case, data management maturity assessment, escalation procedures and other processes.

What else have you seen or should be seen in a data governance framework?   

The Disruptive MDM/PIM/DQM List 2022: Contentserv

One of the recurring entries on The Disruptive MDM/PIM/DQM List is Contentserv.

Contentserv operates under the slogan: Futurize your customers’ product experience.

Using Contentserv, you will be able to develop the groundbreaking product experiences your customers expect — across multiple channels. Contentserv help you unleash the potential of your product information, using our unique combination of advanced technologies.

Contetserv has combined multiple data management technologies in a single platform for controlling the total product experience. The platform facilitates collecting data from suppliers, enriching it into high-grade content, and then personalizing it for use in targeted marketing and promotions.

Learn more about the Contentserv Product Experience Platform here.

PS: You can also find some compelling success stories from Contentserv on the Case Study List here.